coset - definitie. Wat is coset
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is coset - definitie

GROUP, AND H IS A SUBGROUP OF G, AND G IS AN ELEMENT OF G, THEN ONLY WHEN H IS NORMAL WILL THE SET OF RIGHT COSETS AND THE SET OF LEFT COSETS OF H COINCIDE
Left coset; Right coset; Coset representative; Cosets; Coset in a group
  • [''G'' : ''H'']}} is 4.

coset         
['k??s?t]
¦ noun Mathematics a set composed of all the products obtained by multiplying each element of a subgroup in turn by one particular element of the group containing the subgroup.
Coset         
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are left cosets and right cosets.
Double coset         
In group theory, a field of mathematics, a double coset is a collection of group elements which are equivalent under the symmetries coming from two subgroups. More precisely, let be a group, and let and be subgroups.

Wikipedia

Coset

In mathematics, specifically group theory, a subgroup H of a group G may be used to decompose the underlying set of G into disjoint, equal-size subsets called cosets. There are left cosets and right cosets. Cosets (both left and right) have the same number of elements (cardinality) as does H. Furthermore, H itself is both a left coset and a right coset. The number of left cosets of H in G is equal to the number of right cosets of H in G. This common value is called the index of H in G and is usually denoted by [G : H].

Cosets are a basic tool in the study of groups; for example, they play a central role in Lagrange's theorem that states that for any finite group G, the number of elements of every subgroup H of G divides the number of elements of G. Cosets of a particular type of subgroup (a normal subgroup) can be used as the elements of another group called a quotient group or factor group. Cosets also appear in other areas of mathematics such as vector spaces and error-correcting codes.